Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biosci ; 2006 Sep; 31(3): 355-62
Article in English | IMSEAR | ID: sea-110699

ABSTRACT

The thermodynamical stability and remained activity of mushroom tyrosinase (MT) from Agaricus bisporus in 10 mM phosphate buffer, pH 6.8, stored at two temperatures of 4 and 40 degrees C were investigated in the presence of three different amino acids (His, Phe and Asp) and also trehalose as osmolytes, for comparing with the results obtained in the absence of any additive. Kinetics of inactivation obey the first order law. Inactivation rate constant (kinact) value is the best parameter describing effect of osmolytes on kinetic stability of the enzyme. Trehalose and His have the smallest value of kinact (0.7x10(-4) s-1) in comparison with their absence (2.5x10(-4) s-1). Moreover, to obtain effect of these four osmolytes on thermodynamical stability of the enzyme, protein denaturation by dodecyl trimethylammonium bromide (DTAB) and thermal scanning was investigated. Sigmoidal denaturation curves were analysed according to the two states model of Pace theory to find the Gibbs free energy change of denaturation process in aqueous solution at room temperature, as a very good thermodynamic criterion indicating stability of the protein. Although His, Phe and Asp induced constriction of MT tertiary structure, its secondary structure had not any change and the result was a chemical and thermal stabilization of MT. The enzyme shows a proper coincidence of thermodynamic and structural changes with the presence of trehalose. Thus, among the four osmolytes, trehalose is an exceptional protein stabilizer.


Subject(s)
Agaricus/enzymology , Amino Acids/pharmacology , Aspartic Acid/pharmacology , Enzyme Stability/drug effects , Fungal Proteins/chemistry , Histidine/pharmacology , Kinetics , Monophenol Monooxygenase/chemistry , Osmosis , Phenylalanine/pharmacology , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Temperature , Trehalose/pharmacology
3.
Journal of Korean Medical Science ; : 533-541, 2000.
Article in English | WPRIM | ID: wpr-150738

ABSTRACT

The purpose of this study was to determine whether esterification of dehydroepiandrosterone with aspartate (DHEA-aspartate) could reduce peroxisomal proliferation induced by DHEA itself, without loss of antiosteoporotic activity. Female Sprague-Dawley rats were ovariectomized, then DHEA or DHEA-aspartate was administered intraperitoneally at 0.34 mmol/kg BW 3 times a week for 8 weeks. DHEA-aspartate treatment in ovariectomized rats significantly increased trabeculae area in tibia as much as DHEA treatment. Urinary Ca excretion was not significantly increased by DHEA or DHEA-aspartate treatment in ovariectomized rats, while it was significantly increased by ovariectomy. Osteocalcin concentration and alkaline phosphatase activity in serum and cross linked N-telopeptide type I collagen level in urine were not significantly different between DHEA-aspartate and DHEA treated groups. DHEA-aspartate treatment significantly reduced liver weight and hepatic palmitoyl-coA oxidase activity compared to DHEA treatment. DHEA-aspartate treatment maintained a nearly normal morphology of peroxisomes, while DHEA treatment increased the number and size of peroxisomes in the liver. According to these results, it is concluded that DHEA-aspartate ester has an inhibitory effect on bone loss in ovariectomized rats with a marked reduction of hepatomegaly and peroxisomal proliferation compared to DHEA.


Subject(s)
Female , Rats , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/metabolism , Adjuvants, Immunologic/chemistry , Animals , Aspartic Acid/pharmacology , Aspartic Acid/metabolism , Aspartic Acid/chemistry , Biomarkers , Calcium/urine , Calcium/blood , Disease Models, Animal , Esterification , Fatty Acid Desaturases/metabolism , Injections, Intraperitoneal , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Liver/enzymology , Liver/drug effects , Organ Size , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/drug therapy , Ovariectomy , Peroxisomes/metabolism , Dehydroepiandrosterone/pharmacology , Dehydroepiandrosterone/metabolism , Dehydroepiandrosterone/chemistry , Rats, Sprague-Dawley , Tibia/pathology , Tibia/metabolism , Triglycerides/blood
4.
Article in English | IMSEAR | ID: sea-20518

ABSTRACT

Possible central modulation of acute peripheral inflammation by putative amino acid neurotransmitters was investigated in rats by adopting formalin induced pedal inflammation as an experimental model. Out of five amino acids (GABA, glycine, DL-alanine, L-glutamic acid and L-aspartic acid) tested, intracerebroventricular (icv) administration of GABA and L-aspartic acid produced significant alteration in acute inflammation. GABA showed a significant attenuation of paw oedema and nociception whereas, L-aspartic acid produced significant increase in oedema volume along with marked hyperalgesia. In conclusion, the study confirms that CNS is capable of modulating peripheral inflammation.


Subject(s)
Acute Disease , Amino Acids/pharmacology , Animals , Aspartic Acid/pharmacology , Brain/physiology , Formaldehyde , Inflammation/physiopathology , Male , Neurotransmitter Agents/pharmacology , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/pharmacology
5.
Indian J Exp Biol ; 1989 Jul; 27(7): 621-4
Article in English | IMSEAR | ID: sea-59053

ABSTRACT

Cardiac necrosis was produced in rats by administering isoproterenol sulphate (85 mg/kg, sc for 4 days). The myocardial damage was proved by observing the elevated levels of serum aspartate amino-transferase, lactate dehydrogenase and creatine phosphokinase and the changes were confirmed by histopathology of the tissue. Both aspartate and glutamate (100 mg/kg, ip) significantly reduced the elevated levels of these enzymes. The average degree of cardiac necrosis produced in these rats when observed macroscopically and histologically was also found to be significantly reduced on pretreatment with aspartate and glutamate.


Subject(s)
Animals , Aspartic Acid/pharmacology , Female , Glutamates/pharmacology , Isoproterenol/pharmacology , Male , Myocardial Infarction/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL